

    
      
          
            
  Tarantella [https://github.com/cc-hpc-itwm/tarantella]
is an open-source, distributed Deep Learning framework built on top of TensorFlow,
providing scalable Deep Neural Network training on CPU and GPU compute clusters.

Tarantella is easy-to-use, allows to re-use existing TensorFlow models,
and does not require any knowledge of parallel computing.

Distributed training in Tarantella is based on the simplest and most efficient parallelization
strategy for deep neural networks (DNNs), which is called data parallelism.

This strategy is already in use when deploying batched optimizers, such as stochastic
gradient descent (SGD) or ADAM. In this case, input samples are grouped together in
so-called mini-batches and are processed in parallel.

Tarantella extends this scheme by splitting each mini-batch into a number of micro-batches,
which are then executed on different devices (e.g., GPUs).
In order to do this, the DNN is replicated on each device,
which then processes part of the data independently of the other devices.
During the backpropagation pass, partial results need to be accumulated via a so-called
allreduce [https://en.wikipedia.org/wiki/Collective_operation#All-Reduce_%5B5%5D]
collective operation.
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Installation

Tarantella needs to be built from source [https://github.com/cc-hpc-itwm/tarantella].
Since Tarantella is built on top of TensorFlow [https://www.tensorflow.org/],
you will require a recent version of it. Additionally, you will need an installation of
the open-source communication libraries GaspiCxx [https://github.com/cc-hpc-itwm/GaspiCxx]
and GPI-2 [http://www.gpi-site.com/],
which Tarantella uses to implement distributed training.

Lastly, you will need pybind11 [https://github.com/pybind/pybind11], which is required
for Python and C++ inter-communication.

In the following we will look at the required steps in detail.


Installing dependencies


Compiler and build system

Tarantella can be built using a recent gcc [https://gcc.gnu.org/]
compiler with support for C++17 (starting with gcc 7.4.0).
You will also need the build tool CMake [https://cmake.org/] (from version 3.12).



Installing TensorFlow

First you will need to install TensorFlow.
Supported versions range between Tensorflow 2.4 - 2.9, and they can be installed in a conda
environment using pip, as recommended on the
TensorFlow website [https://www.tensorflow.org/install].


Caution

This tutorial targets installations on the STYX cluster, where some of the dependencies are pre-installed.
For a full description of Tarantella’s installation steps, refer to the
Tarantella documentation [https://tarantella.readthedocs.io/en/latest/installation.html].



To get started, create and activate an environment for Tarantella:

conda create -n tarantella
conda activate tarantella





Now, you can install TensorFlow with:

conda install -c nvidia python==3.9 cudatoolkit~=11.2 cudnn
pip install --upgrade tensorflow_gpu==2.9
conda install pybind11 pytest networkx





Tarantella requires at least Python 3.7. Make sure the selected version also matches
the TensorFlow requirements [https://www.tensorflow.org/install].


Caution

If a new conda environment is created, or Tensorflow is reinstalled/updated, please
repeat all the steps concerning the
Tarantella library installation.
The Tarantella backend is compiled against the TensorFlow library, and thus it requires
exactly the same binary version at runtime.





Installing GaspiCxx

GaspiCxx [https://github.com/cc-hpc-itwm/GaspiCxx] is a C++ abstraction layer built
on top of the GPI-2 library, designed to provide easy-to-use point-to-point and collective
communication primitives.
Tarantella’s communication layer is based on GaspiCxx and its
PyGPI [https://github.com/cc-hpc-itwm/GaspiCxx/blob/v1.2.0/src/python/README.md] API for Python.

To install GaspiCxx and PyGPI, first download the latest dev branch from the
git repository [https://github.com/cc-hpc-itwm/GaspiCxx]:

git clone https://github.com/cc-hpc-itwm/GaspiCxx.git
cd GaspiCxx
git checkout dev





Compile and install the library as follows, making sure the previously created conda
environment is activated:

conda activate tarantella

mkdir build && cd build
export GASPICXX_INSTALLATION_PATH=/your/gaspicxx/installation/path
cmake -DBUILD_PYTHON_BINDINGS=ON    \
      -DBUILD_SHARED_LIBS=ON        \
      -DCMAKE_INSTALL_PREFIX=${GASPICXX_INSTALLATION_PATH} ../
make -j$(nproc) install





where ${GASPICXX_INSTALLATION_PATH} needs to be set to the path where you want to install
the library.




Building Tarantella from source

With all dependencies installed, we can now download, configure and compile Tarantella.
To download the source code, simply clone the
GitHub repository [https://github.com/cc-hpc-itwm/tarantella.git]:

git clone https://github.com/cc-hpc-itwm/tarantella.git
cd tarantella
git checkout master





Next, we need to configure the build system using CMake.
For a standard out-of-source build, we create a separate build folder and run cmake
in it:

conda activate tarantella

cd tarantella
mkdir build && cd build
export TARANTELLA_INSTALLATION_PATH=/your/installation/path
cmake -DCMAKE_INSTALL_PREFIX=${TARANTELLA_INSTALLATION_PATH} \
      -DCMAKE_PREFIX_PATH=${GASPICXX_INSTALLATION_PATH} ../





Now, we can compile and install Tarantella to TARANTELLA_INSTALLATION_PATH:

make -j$(nproc) install
export PATH=${TARANTELLA_INSTALLATION_PATH}/bin:${PATH}







[Optional] Building and running tests

In order to build Tarantella with tests, please follow the steps from the
Tarantella docs [https://tarantella.readthedocs.io/installation#optional-building-and-running-tests].





            

          

      

      

    

  

    
      
          
            
  
Quick Start

This section explains how to start using Tarantella to distributedly
train an existing TensorFlow model.


Note

Tarantella is composed of two different components that need to be used
together for data parallel training across multiple devices.


	Python module that can be imported in your code and provides access to the Tarantella API.


	Runtime execution script tarantella to deploy the code in parallel.






Now, we will examine what changes have to be made to your code,
and how to execute it on the command line with tarantella.


Code example: LeNet-5 on MNIST

After having built and installed Tarantella
we are ready to add distributed training support to an existing TensorFlow model.
We will first illustrate all the necessary steps, using the well-known example of
LeNet-5 on the MNIST dataset. Although this is not necessarily a good use case
to take full advantage of Tarantella’s capabilities, it will allow you to simply
copy-paste the code snippets and try them out, even on your laptop.

Let’s get started!

 1import tensorflow as tf
 2from tensorflow import keras
 3
 4# Initialize Tarantella (before doing anything else)
 5import tarantella as tnt
 6
 7# Skip function implementations for brevity
 8[...]
 9
10args = parse_args()
11              
12# Create Tarantella model from a `keras.Model`
13model = tnt.Model(lenet5_model_generator())
14
15# Compile Tarantella model (as with Keras)
16model.compile(optimizer = keras.optimizers.SGD(learning_rate=args.learning_rate),
17              loss = keras.losses.SparseCategoricalCrossentropy(),
18              metrics = [keras.metrics.SparseCategoricalAccuracy()])
19
20# Load MNIST dataset (as with Keras)
21shuffle_seed = 42
22(x_train, y_train), (x_val, y_val), (x_test, y_test) = \
23      mnist_as_np_arrays(args.train_size, args.val_size, args.test_size)
24
25train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))
26train_dataset = train_dataset.shuffle(len(x_train), shuffle_seed)
27train_dataset = train_dataset.batch(args.batch_size)
28train_dataset = train_dataset.prefetch(tf.data.experimental.AUTOTUNE)
29
30test_dataset = tf.data.Dataset.from_tensor_slices((x_test, y_test))
31test_dataset = test_dataset.batch(args.batch_size)
32
33# Train Tarantella model (as with Keras)
34model.fit(train_dataset,
35          epochs = args.number_epochs,
36          verbose = 1)
37
38# Evaluate Tarantella model (as with Keras)
39model.evaluate(test_dataset, verbose = 1)





As you can see from the marked lines in the code snippet,
you only need to add two lines of code to train LeNet-5 distributedly using Tarantella!
Let us go through the code in some more detail, in order to understand what is going on.

First we need to import the Tarantella library:

import tarantella as tnt





Importing the Tarantella package will initialize the library and set up the communication
infrastructure.
Note that this should be done before executing any other code.

Next, we need to wrap the keras.Model object, generated by lenet5_model_generator(),
into a tnt.Model object:

model = tnt.Model(lenet5_model_generator())





That’s it!

All the necessary steps to distribute training and datasets will now be automatically handled by Tarantella.
In particular, we still run model.compile on the new model to generate a compute graph,
just as we would have done with a typical Keras model.

Next, we load the MNIST data for training and testing, and
create tf.data.Dataset s from it. Note that we batch the dataset for training.
This will guarantee that Tarantella is able to distribute the data later on in the correct way.
Also note that the batch_size used here, is the same as for the original model,
that is the global batch size.  For details concerning local and global batch sizes have a look
here.

Now we are able to train our model using model.fit, in the same familiar
way used by the standard Keras interface. Note, however, that Tarantella is taking care of the proper
distribution of the train_dataset in the background. All the possibilities of how to
feed datasets to Tarantella are explained in more detail below.
Lastly, we can evaluate the final accuracy of our model on the test_dataset using
model.evaluate.

To test and run Tarantella in the next section, you can find a full version of the above example
here [https://github.com/cc-hpc-itwm/tarantella_tutorial/blob/main/examples/lenet5.py].



Executing your model with tarantella

Next, let’s execute our model distributedly using tarantella on the command line.


Caution

When working on STYX, make sure to export the following environment variables
before calling tarantella:

export LD_LIBRARY_PATH=/opt/GPI/lib64:${LD_LIBRARY_PATH}
export LD_LIBRARY_PATH=${GASPICXX_INSTALLATION_PATH}:${LD_LIBRARY_PATH}







The simplest way to run the model is by passing its Python script to tarantella:

tarantella -- model.py





This will execute our model distributedly on a single node, using all the available GPUs.


Caution

On STYX, you might run into some error messages when trying to use the GPUs.
Follow the following steps to correctly run Tarantella:

export CONDA_ENV_PATH=/path/to/your/conda/environment

mkdir -p ${CONDA_ENV_PATH}/lib/nvvm/libdevice
mv ${CONDA_ENV_PATH}/lib/libdevice.10.bc ${CONDA_ENV_PATH}/lib/nvvm/libdevice
export LD_LIBRARY_PATH=${CONDA_ENV_PATH}/lib:${LD_LIBRARY_PATH}





Always add the following -x flags to the tarantella command in the examples bellow:

tarantella -x XLA_FLAGS="--xla_gpu_cuda_data_dir=${CONDA_ENV_PATH}/lib" ...







We can also set command line parameters for the python script model.py, which have to
succeed the name of the script:

tarantella -- model.py --batch_size=64 --learning_rate=0.01





On a single node, we can also explicitly specify the number of TensorFlow instances
we want to use. This is done with the -n option:

tarantella -n 2 -- model.py --batch_size=64





Here, tarantella will try to execute distributedly on 2 GPUs.
If there are not enough GPUs available, tarantella will print a WARNING
and run 2 instances of TensorFlow on the CPU instead.

Next, let’s run tarantella on multiple nodes. In order to do this,
we need to provide tarantella with a hostfile that contains
the hostname s of the nodes that we want to use:

$ cat hostfile
name_of_node_1
name_of_node_2






Note

On the STYX cluster, the list of hostnames that belong to a job
can be generated by running the following command:

echo ${CARME_NODES} | uniq > ./hostfile








Caution

Create a job comprising multiple nodes to run Tarantella distributedly!
Only nodes that belong to the same job can be accessed by the tarantella command.



With this hostfile we can run tarantella on multiple nodes:

tarantella --hostfile hostfile -- model.py





In this case, tarantella uses all GPUs it can find.
If no GPUs are available, tarantella will start one TensorFlow instance
per node on the CPUs, and will issue a WARNING message.
Again, this can be disabled by explicitly using the --no-gpu
option.

As before, you can specify the number of GPUs/CPUs used per node
explicitly with the option --n-per-node <number>:

tarantella --hostfile hostfile --n-per-node 2 --no-gpu -- model.py --batch_size=64





In this example, tarantella would execute 2 instances of TensorFlow on the CPUs
of each node specified in hostfile.

In addition, tarantella can be run with different levels of logging output.
The log-levels that are available are INFO, WARNING, DEBUG and ERROR,
and can be set with --log-level:

tarantella --hostfile hostfile --log-level INFO -- model.py





To add your own environment variables, add -x ENV_VAR_NAME=VALUE to your
tarantella command. This option will ensure the environment variable ENV_VAR_NAME
is exported on all ranks before executing the code. An example is shown below:

tarantella --hostfile hostfile -x DATASET=/scratch/data TF_CPP_MIN_LOG_LEVEL=1 -- model.py





Both DATASET and TF_CPP_MIN_LOG_LEVEL will be exported as environment variables
before executing model.py, in the same order they were specified to the command line.

To terminate a running tarantella instance, execute another tarantella command that
specifies the --cleanup option in addition to the name of the program you want to interrupt.

tarantella --hostfile hostfile --cleanup -- model.py





The above command will stop the model.py execution on all the nodes provided in hostfile.
You can also enable the --force flag to immediately terminate unresponsive processes.


Note

Any running tarantella execution can be terminated by using Ctrl+c, regardless of
whether it was started on a single node or on multiple hosts.





Using distributed datasets

This section explains how to use Tarantella’s distributed datasets.

The recommended way in which to provide your dataset to Tarantella is by passing a
batched tf.data.Dataset to tnt.Model.fit.
In order to do this, create a Dataset and apply the batch
transformation [https://www.tensorflow.org/api_docs/python/tf/data/Dataset#batch]
using the (global) batch size to it. However, do not provide a value to batch_size
in tnt.Model.fit, which would lead to double batching, and thus modified shapes
for the input data.

Tarantella can distribute any tf.data.Dataset, regardless of the number and type of
transformations that have been applied to it.


Note

When using the dataset.shuffle transformation without a seed, Tarantella
will use a fixed default seed.



This guarantees that the input data is shuffled the same way on all devices,
when no seed is given, which is necessary for consistency.
However, when a random seed is provided by the user, Tarantella will use that one instead.

Tarantella does not support any other way to feed data to fit at the moment.
In particular, Numpy arrays, TensorFlow tensors and generators are not supported.

Tarantella’s automatic data distribution can be switched off by passing
tnt_distribute_dataset = False in tnt.Model.fit, in which case Tarantella
will issue an INFO message.
If a validation dataset is passed to tnt.Model.fit, it should also be batched
with the global batch size. You can similarly switch off its automatic
micro-batching mechanism by setting tnt_distribute_validation_dataset = False.



Callbacks

Tarantella callbacks are discussed in detail in the
Tarantella docs [https://tarantella.readthedocs.io/en/latest/quick_start.html#callbacks].





            

          

      

      

    

  

    
      
          
            
  
Image Classification with Tarantella

This section delves into a more advanced usage of Tarantella by looking at
distributed training for state-of-the-art image classification models.

The image classification model architectures are imported through the
tf.keras.applications [https://www.tensorflow.org/api_docs/python/tf/keras/applications]
module, available in recent TensorFlow releases.


ResNet-50

Deep Residual Networks (ResNets) represented a breakthrough in the field of
computer vision, enabling deeper and more complex deep convolutional networks.
Introduced in [He], ResNet-50 has become a standard model for image classification
tasks, and has been shown to scale to very large number of nodes in data parallel
training [Goyal].


Run Resnet-50 with Tarantella

Let’s assume we have access to two nodes (saved in hostfile) equipped with 4 GPUs each.
We can now simply run the ResNet-50 as follows:

cd examples/image_classification
tarantella --hostfile ./hostfile --devices-per-node 4 \
-- ./train_imagenet_main.py --model_arch=resnet50 --batch_size=256 --train_epochs=3 \
                            --val_freq=3 --train_num_samples=2560 --val_num_samples=256 \
                            --synthetic_data





The above command will train a ResNet-50 models on the 8 devices available in parallel
for 3 epochs.
The --val_freq parameter specifies the frequency of evaluations of the
validation dataset performed in between training epochs.

Note the --batch_size parameter, which specifies the global batch size used in training.

The --synthetic_data instructs the code to generate a synthetic ImageNet-like dataset, that can be used
to showcase the training procedure. However, it will not provide any meaningful results.
Remove the --synthetic_data parameter a specify a --data_dir path to an actual ImageNet directory
to properly train the model.


Note

On the STYX cluster, a pre-downloaded version of the ImageNet dataset can be found in
/home/DATA/PUBLIC_DATA/ImageNet.




Caution

On STYX, don’t forget to add the following -x flags to the tarantella command
to correctly detect the GPUs (and redo the steps from
here if in a new terminal)

tarantella -x XLA_FLAGS="--xla_gpu_cuda_data_dir=${CONDA_ENV_PATH}/lib" ...









Implementation overview

We will now look closer into the implementation of the ResNet-50 training scheme.
The main training steps reside in the examples/image_classification/train_imagenet_main.py file.

The most important step in enabling data parallelism with Tarantella is
to wrap the Keras model into a Tarantella model that uses data parallelism for speeding up training.

This is summarized below for the ResNet50 model:

model = tf.keras.applications.resnet50.ResNet50(include_top=True, weights=None, classes=1000,
                                                input_shape=(224, 224, 3), input_tensor=None,
                                                pooling=None, classifier_activation='softmax')
model = tnt.Model(model,
                  parallel_strategy = tnt.ParallelStrategy.DATA)





Next, the training procedure can simply be written down as it would be for a
standard, TensorFlow-only model. No further changes are required to train the
model in a distributed manner.

In particular, the ImageNet dataset is loaded and preprocessed as follows:

train_input_dataset = load_dataset(dataset_type='train',
                                   data_dir=args.data_dir, num_samples = args.train_num_samples,
                                   batch_size=args.batch_size, dtype=tf.float32,
                                   drop_remainder=args.drop_remainder,
                                   shuffle_seed=args.shuffle_seed)





The
load_dataset [https://github.com/cc-hpc-itwm/tarantella_tutorial/blob/main/examples/image_classification/train_imagenet_main.py#L76]
function reads the input files in data_dir, loads the training samples, and processes
them into TensorFlow datasets.

The user only needs to pass the global batch_size value, and the Tarantella
framework will ensure that the dataset is properly distributed among devices,
such that:



	each device will process an independent set of samples


	each device will group the samples into micro batches, where the micro-batch
size will be roughly equal to batch_size / num_devices.
If the batch size is not a multiple of the number of ranks, the remainder samples
will be equally distributed among the participating ranks, such that some ranks
will use a micro-batch of (batch_size / num_devices) + 1.


	each device will apply the same set of transformations to its input samples as
specified in the load_dataset function.







The advantage of using the automatic dataset distribution mechanism of Tarantella
is that users can reason about their I/O pipeline without taking care of the details
about how to distribute it.

Before starting the training, the model is compiled using a standard Keras optimizer
and loss.

model.compile('optimizer' : tf.keras.optimizers.SGD(learning_rate=lr_schedule, momentum=0.9),
              'loss' : tf.keras.losses.SparseCategoricalCrossentropy(),
              'metrics' : [tf.keras.metrics.SparseCategoricalAccuracy()])





We provide flags to enable the most commonly used Keras callbacks, such as
the TensorBoard profiler, which can simply be passed to the fit function
of the Tarantella model.

callbacks.append(tf.keras.callbacks.TensorBoard(log_dir = flags_obj.model_dir,
                                                profile_batch = 2))





There is no need for any further changes to proceed with distributed training:

history = model.fit(train_dataset,
                    validation_data = val_dataset,
                    validation_freq=args.val_freq,
                    epochs=args.train_epochs,
                    callbacks=callbacks,
                    verbose=args.verbose)
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Frequently Asked Questions (FAQ)

Check this page [https://tarantella.readthedocs.io/en/latest/faq.html] out
for frequently asked questions about Tarantella.
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